
 9]-175{,8

C Formal Verification with Unix

Communication and Concurrency

D. N. I loover

Odyssey Research Associates, Ithaca NY

Abstract

This talk reports the results of a NASA SBIR project in which

we developed CSP-Ariel, a w,rification system for C progranls which

use |lnix system calls for concllrrent l_rogra.mming, inl,erprocess coin-

re,ideation, aml file inlmt and o, tput. This project builds on ORA's

Ariel C, verification system by using the system of lloare's book Com-

m,tnicalin.q Sequential i'r_wcsse,_ to model concurrency and co,nmuni-

ca.tion. The system runs in Oi_A's (_lio theorem proving e,wironment.

We outline I,ow we use CSP to model Unix concurrency, and sketch

the CSP semantics of a. simple concurrent program. We discuss pla.ns

for further develolmmnt of CSI'-ArM.



C Formal Verification with

Unix communication and concurrency

(NASA SBIR)

Aim: Verification system for

• C programs

• Unix system calls

• concurrent programming (fork,

exlt, pipe)

wait,

• file and device i/o (read,

close).

write, open,



Example program.

void producer () ;
votd cons_unoY() ;

int pipedes[2};

void main()

{
int J.d;

if (pipe(pipedes) -- -i) return;

id = fork();

if (id _= -I) return;

if (id == O) consumer();

else producer();

return;

)

void producer()

(
char c;

int status;

while (read(O, &c, I) != O)

write(pipedes[l], &c,

close(pipedes[l]) ;

exit (wait (&status)) ;

/*

I);
0 = standard input filedes

void consumer()

(
char c;

close(pipedes[]]); /* so that pipe read
closes its write

while (read(pipedes[O], &c, i) != O)

write(l, &c, l) ; /* I = standard

exit (0) ;

will fail when

end of pipe */

output filedes

./

producer

,/



Example Program Schematic

stdln

stdout

Main

pipe/

Main

producer pipe

fork

pipe

consumer



Technical Approach

• C semantics via Ariel operational semantics (pre-

existing)

• Unix communication and concurrency semantics

via Hoare's CSP

2



CSP (Communicating Sequential Processes)

• See Hoare's book, Communicating Sequential Pro-

cesses.

• An algebraic language for describing systems of

processes with synchronous communication.

• Objects of the language are processes and events.

Processes resemble state machines, events the in-

put alphabet. Deterministic and nondeterministic

processes.

• Processes participate in events and are transformed

by them.

• Synchronous communication by participation in shared
events.

3



Unix modeling

Unix processes, files, pipes,

system tables are modeled as

tic CSP-processes.

and certain

determinis-

Forking, pipe creation, file opening and

closing, ]/0, waiting, and exiting are mod-

eled as events.

4



Example: Asynchonous pipe communication

Sending process A, pipe P,

BI

e(s) te(s)

receiving process

(t) (s)

)



Processes transformed

d(s)

by events

it



Verification method

• C program given

• Ariel front end generates Caliban expression for

abstract syntax tree of program.

Ariel C semantics plus Unix system call semantics

define denotation of a C program and associated

files inside operating system as a CSP process.

• Internal operations of systems of processes hidden

by CSP concealment operation.

We reason about the resulting CSP process in

Clio. Main tools are induction on traces (event se-

quences) of processes, and algebraic laws of CSP.

Clio is a very general theorem prover, and we are
not limited in the kinds of properties we can prove

about processes.



Producer as a CSP process

Read char

from

stdin

Read "c"

(stdin closed)

Close pipe

°

Write "c"

Write char to

pipe

close

Wait for

child

wait

Exit

Exit

Run



Hiding events:

Overall process with non-I/O events hidden.

RUN Read "c"

CONTENTS <- C:CONTENTS

Read a char from

stdin

CONTENTS

Read ""

Write "head (CONTENTS)"

CONTENTS <- tail (CONTENTS)

Write a char to

Write(head(CONTENTS))

CONTENTS <- tail(CONTENTS)

CONTENTS = ""



CSP-Ariel Development Plan

• C semantics via Ariel symbolic interpreter (exist-

ing)

• Unix communication and concurrency semantics

via deterministic CSP (initial work completed).

• Extensions to support network communication planned

(sockets).

• Nondeterministic CSP and event concealment for

specification and modularity (planned)

• Graphic specification support using Romulus inter-

face (planned)



Clio, Caliban, and, Ariel

Ariel is a semantic verification system for a sub-

set of C, written in Caliban and the Clio met-

alanguage. Floating point, overflow support via

asymptotic correctness.

• Caliban is a lazy, purely functional language based

on recursive equations and pattern matching.

Clio is a higher-order logic theorem prover. Cal-
iban is its term definition language. Clio's main

proof methods are induction on Caliban defini-
tions, term rewriting, and case splitting.


